A Survey on comparison of Content Based Image Retrieval Techniques

Arshi A Khan

Department of Electronics Engineering, Father Conceicao Rodrigues COE bandra Arshi_elex@hotmail.com

Abstract- Problems with traditional methods of image indexing have led to the rise of interest in techniques for retrieving images on the basis of automatically-derived features such as colour, texture and shape – a technology now generally referred to as Content-Based Image Retrieval. These techniques encompass diversified areas, viz. image segmentation, image feature extraction, representation, mapping of features to semantics, storage and indexing, image similarity-distance measurement and retrieval, making CBIR system development a challenging task. This paper does a survey & comparison of different methods of content based image retrieval available. It also considers comparison with the techniques which uses concepts like lifting scheme to consider best weights of the images in the database when compared to query and gives improved retrieval performances. It takes a peek into the work done in this field and finally concludes the best method available after comparing all.

Index Terms- Memory learning; Bayesian estimation; color histogram; rotated complex wavelet filters; SVM; CWT; GLCM; CCM.

1. INTRODUCTION-

The earliest use of the term content-based image retrieval in the literature seems to have been by Kato [1992], to describe his experiments into automatic retrieval of images from a database by colour and shape feature. The term has since been widely used to describe the process of retrieving desired images from a large collection on the basis of features (such as colour, texture and shape) that can be automatically extracted from the images themselves. CBIR draws many of its methods from the field of image processing and computer vision, and is regarded by some as a subset of that field. A typical system shown in figure1 allows users to formulate queries by submitting an example of the type of image being sought, though some offer alternatives such as selection from a palette or sketch input. The system then identifies those stored images whose feature values match those of the query most closely, and displays the result.

Fig1. Block diagram for CBIR system

CBIR can be divided in the following stages:

• Preprocessing: The image is first processed in order to extract the features, which describe its contents. The processing involves filtering, normalization, segmentation, and object identification. The output of this stage is a set of significant regions and objects.

• Feature extraction: Features such as shape, texture, color, etc. are used to describe the content of the image. Image features can be classified into primitives.

CBIR combines high-tech elements such as:

- Multimedia, signal and image processing,
- Pattern recognition,
- Human-computer interaction,
- Human perception information sciences.

2. Literature review

A brief summary of some of the CBIR systems has been presented in this section. In a research work carried out by cho et.al [1], an image retrieval system based on human preference and emotion by using an interactive genetic algorithm (IGA) was developed. This system extracts the feature from images by wavelet transform, and provides a user-friendly means to retrieve an image from a large database when the user cannot clearly define what the image must be. Therefore, this facilitates the search for the image not only with explicit queries, but also with implicit queries such as "cheerful impression," "gloomy impression," and so on. A thorough experiment with a 2000 image database shows the usefulness of the proposed system.

Zhong Su et al [2], proposed a new relevance feedback approach to CBIR with progressive learning capability combined with a novel method for the feature subspace extraction. The proposed approach is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. Positive examples are used to estimate a Gaussian distribution that represents the desired images for a given query; while the negative examples are used to modify the ranking of the retrieved candidates. In addition, feature subspace is extracted and updated during the feedback process using a Principal Component Analysis (PCA) technique and based on user's feedback. That is, in addition to reducing the dimensionality of feature spaces, a proper subspace for each type of features is obtained in the feedback process to further improve the retrieval accuracy. Experiments demonstrate that the proposed method increases the retrieval speed, reduces the required memory and improves the retrieval accuracy significantly. This dynamic dimension adjusting method is especially effective when the feature dimensions are significantly reduced, e.g., lower than 30% of the original dimensions. The feedback process plays two roles: providing information for updating the Gaussian parameters in the Bayesian feedback, and providing evidence for the adjustment of feature subspace dimensionalities. In principle, the proposed feature subspace extraction method can be incorporated in any other content-based retrieval methods to save memory and to speed-up computation.

Junwei Han et.al [3], in their study reported a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of their framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experimental evaluations on a largescale image database have already shown very promising results. However, a limitation of the proposed work is that it somewhat lacks sufficient theoretical justification.

Mumtaz et.al[5], presented a novel color image retrieval system (SVMBIR) based on dual tree complex wavelet transform(CWT) and support vector machines (SVM).They have shown how one can improve the performance of image retrieval systems by assuming two attributes. Firstly, images that user needs through query image are similar to a group of images with same conception. Secondly, there exists non-linear relationship between feature vectors of different images and can be exploited very efficiently with the use of support vector machines. At first level, for low level feature extraction we have used dual tree complex wavelet transform because recently it is proven that CWT can be used for efficient color feature extraction just like texture feature extraction. At second level to extract semantic concepts, we grouped images of typical classes with the use of one against all support vector machines. We have also shown how one can use a correlation based distance metric for comparison of SVM distance vectors. The experimental results show that the proposed approach has superior retrieval performance over the existing linear feature combining techniques.

Zhang et.al [7], in their work applied the watermarking technique into the content based image retrieval system and proposed a novel approach for JPEG image retrieval. The proposed image retrieval system consists of two main phases, offline process and online retrieval process. The feature vector is extracted from each image as the watermark to be embedded into the image, which is the preprocessing operation called offline process. It doesn't require decompressing the JPEG images but directly embedding the watermark in the DCT domain. The online retrieval process consists of three processes, i.e., query feature computation, watermark extraction and feature vector matching. Since the features are embedded in the image data, it is unnecessary to compute the features but only to extract it from the watermarked image. The system embeds the features in the images, and we need no extra space to save the feature data. Therefore, the storage space is saved.

Lee et.al [8], in their paper, proposed an efficient image retrieval algorithm. Using this algorithm, desired images can be retrieved by using similar input sample images. Their research images included vehicles, buildings, flowers and other natural scenes. Firstly, edge and morphological filter on the grey scale images is applied to refill and extract the largest interesting object from the image. Second, an image retrieval algorithm called Region of Interest (ROI) Motif Co-occurrence Matrix (RMCM) is developed to find the relation of the neighboring pixels on the image. In this algorithm, a 2 x 2 pattern called a motif is generated. The main idea of this algorithm is to quickly and accurately find the characteristic values about motif. Finally, comparison of the Euclidean distance of the characteristic values from the motif to locate the most similar image from database is done. In the developed algorithm the partly area motif and characteristic area center location methods are combined to raise the accuracy and speed of

recognition. Using the proposed algorithm RMCM, the mean processing time is about 0.82 seconds per image. This value is faster than using Motif Cooccurrence Matrix (MCM) by about 2.57 times. The accurate recognition rates are about 95% and 87% as related to vehicles and buildings. Compared with MCM, experiments showed that RMCM has a higher recognition rate based on structure content such as buses and buildings, and natural content such as flowers. It also reduced the time to calculate the feature of images, speeding up the image retrieval system.

Dr Kekre et.al [9], proposed a novel block truncation coding (BTC) extended to color clumps for image retrieval purpose. Total of 24 variations using four color clumps and six color spaces are experimented on image database having 1000 images. Experimental results have shown that the YCbCr color space gives better results than other considered color spaces (YUV, LUV, YCgCb, YIQ and RGB). Performance increases with increase in number of color clumps up to 8 Clumps and then starts to decrease. The Extended BTC 8 Clumps with YCbCr color space is given the best performance in image retrieval.

Bounthanh et.al [10], proposed a novel framework for combining and weighting all of three i.e. color, shape and texture features to achieve higher retrieval efficiency. The color feature is extracted by quantifying the YUV color space and the color attributes like the mean value, the standard deviation, and the image bitmap of YUV color space is represented. The texture features are obtained by the entropy based on the gray level co-occurrence matrix and the edge histogram descriptor of an image. The shape feature descriptor is derived from Fourier descriptors (FDs) and the FDs derived from different signatures. When computing the similarity between the query image and target image in the database, normalization information distance is also used for adjusting distance values into the same level. And then the linear combination has used to combine the normalized distance of the color, shape and texture features to obtain the similarity as the indexing of image. The experimental results of the proposed approach have shown weight variation to achieve higher retrieval efficiency: the efficiency can be achieved in 91% by weight $W_c = 70\%$, $W_c = 20\%$ and $W_s = 10\%$. In addition, we had compared the efficiency and accuracy with other the retrieval scheme, which the our approach had better than the performance of other systems.

Lai et.al [14] proposed a user oriented mechanism based on interactive genetic algorithm (IGA). Color attributes like mean, standard deviation and image bitmap of color image are used as features for retrieval. In addition, Entropy based on Grey level cooccurrence matrix and edge histograms are considered as texture features. To reduce the gap between user's expectations and retrieval results, IGA is applied. Experimental results have shown an improvement in retrieval performance due to use of IGA.

Zs. Robotka et al [15] gave a software which was able to search, cluster & classify large sets of different images using low dimensional representation of images to extract relevant images from the database. Images are represented by using Gaussian mixture model. Image matching is done by matching the representations with a distance measure based on approximation of the Kullback Liebler divergence. The GMMs are estimated using improved EM algorithm that avoids convergence to the boundary of the parameter space.

A.M Patil et al [16] proposed a content based image retrieval system based on non separable lifting scheme , genetic algorithm & CBIR. Traditional systems considered searching images from the database using its texture and shape and therefore the entire database gets scanned and the process is time consuming. Whereas the proposed system adapts a multidimensional wavelet filter bank and lifting scheme for identifying best weights. Experiments show that better retrieval results could be obtained by using non separable wavelet instead of separable. Maximum features can be extracted using non separable wavelet. The system is tested under all criteria and is found to be user friendly and scalable.

3. RESUTS & DISCUSSION

This section compares various Content based image retrieval techniques. Comparison is made on the basis of algorithm used, parameters which decide the performance of the system, advantages of the proposed system and drawbacks if any.

Table I: Comparison of different CBIR techniques

Algorit	Para	Advantages	Draw	
hm used	-meters		backs	
uscu				
Bayesi- an Releva- nce feedba- ck , PCA [2]	Gaussian, Computati onal time, memory requireme nt, Retrieval accuracy.	Less storage space requirement, high accuracy, fast retrieval speed.	For feature dimension s below 30%, dimension s need to be adjusted dynamical ly to achieve	
			without	

			1 0	1				
			loss of					
			accuracy.		Watarm	Fuelideen	Since	
					w aterin	Lucidean	factures are	
						uistance,	ambaddad in	
					[/]		the image	-
						recan.	for later	
		With the	More				not fater	
Interacti	Fitness	help of IGA,	genet-				storage	
ve	function,	an explicitly	ic				storage	
Genetic	Wavelet	expressed	operators				space is	
Algorith	coefficient	image as	need to be				Broposed	
m [1]		well as an	applied				rioposed	
		abstract	and better				factor then	
		image could	encoding				laster than	
		be retrieved	methods				direct	
		accurately &	need to be				feature	
		quickly,	devised to				extraction	
		searches an	improve				based	
		image with	performan				retrieval	
		human	-ce.				scheme in	
		preference						
		& emotion.					initianzation	
		Proposed		1			and	
		framework					aigoriumi	
Memor	Semantic	is able to	Lack of				time.	
у	correlatio	efficiently	sophisticat				Extended	
learning	n,	annotate	-ed and		Plaak	Provision		
framew	Retrieval	images and	theoretical		block	Precision,	DIC o	-
ork [4]	accuracy.	also	learning		uuncau	Recall	clumps by	
		propagate	scheme.		coding		VChCr	
		the keyword			[0]		rives best	
		annotation			[2]		retrieval	
		from labeled					performance	
		images to					periormanee	
		unlabeled					•	
		ones, A					Lesser time	
		learning			Region	Euclidian	needed to	
		strategy is			of	distance	calculate	
		presented to			interest	processing	image	_
		predict			Motif	time.	features.	
		hidden			Co-	precision	faster	
		semantics			occurre	rate.	retrieval	
		thus			nce		compared to	
		improving			matrix		MCM	
		retrieval			[8]		algorithm,	
		performance			L - J		Mean	
		, memorized					processing	
		Teedback					time is 0.82	
		irom					seconds/ima	
		previous					ge.	
		improves					~~~~~	
		retriovel				Precision,	Weight	In case of
		accuracy			Weight	Recall,	variation	certain
		and evetem			variatio	Hamming	gives	image
		is robust to			n [10]	distance,	efficiency	categories,
		mild user				Euclidian	up to 91%.	the
		errors				distance,		proposed
		011018.				Fourier		system

	descriptor		gives	Gaussian	Kullback-	The	The GMMs
	s mean		inferior	Mixture	liebler	developed	are
	standard		nerforman	model	divergence	tool is able	estimated
	deviation		ce	Expectation	distance	to manage	with an
	de viution.		compared	maximizati	matrix	GMM	improved
			to $[14]$	on	maurx	building	expectation
				algorithm		with	maximizati
				[15]		different	On
Interacti	Precision	Significance	Mutation	[15]		narameters	algorithm
ve	Recall	improvemen	operator			1000	without
Genetic	Recall.	t in retrieval	needs			images can	which the
		performance	more no			he	method is
m		due to IGA	of			processed	inefficient
(IGA)		As the no	generation			in 3	as it
[14]		generations	s to			minutes.	converges
[*]		increase	achieve				to singular
		100%	good				solution in
		precision	results				most cases.
		could be	results.	Non	Kullback	System is	
		obtained.		separable	liebler	highly	
		Proposed		lifting	divergence.	scalable &	
		system gives	Lesser	scheme.	Precision.	user	-
		higher	images are	Genetic	Recall.	friendly,	
DTCW	Correlatio	retrieval	used for	algorithm		uses	
T, SVM	n based	rates,	training.	[16]		multidimen	
[5]	distance	Effective	C			sional filter	
	metric,	and efficient				bank &	
	Retrieval	method to				lifting	
	rate	retrieve				scheme to	
		visually				identify	
		similar				best	
		images				weights,	
		having non-				maximum	
		linear				features can	
		relationship				be extracted	
		among their				using non	
		feature				separable	
		vectors.				wavelet	
		90%				compared	
		precision				to	
		could be				separable.	
		obtained by					
		using the					
		proposed					
		approach.					

4. CONCLUSION

In this paper a comparison of different CBIR techniques is carried out and it is concluded that a combination of weight variation [10] and IGA [14] will give better performance as compared to various other techniques as it gives high performance based on the weights assigned to various features.

REFERENCES

[1] S.-B.Cho; J.-Y.Lee (2002): A human oriented image retrieval system based on interactive Genetic Algorithm. IEEE transactions. Syst., Man, Cybern.A, Syst., Humans, Vol. 32, no.3, pp. 452-458.

[2] Zhong Su; Hongjiang Zhang; Stan Li; Shaoping Ma (2003): Relevance Feedback in Content-Based image Retrieval: Bayesian Framework, Feature subspaces, and Progressive Learning. IEEE Transactions on Image Processing, vol. 12, no. 8.

- [3]Junwei Han; King N. Ngan; Fellow; Mingjing Li; Hong-Jiang Zhang (2005): A Memory Learning Framework for Effective Image Retrieval. IEEE Transactions on Image Processing, Vol. 14, no. 4.
- [4] Manesh Kokare; P. K. Biswas; B. N. Chatterji (2005): Texture Image Retrieval Using New Rotated Complex Wavelet Filters. IEEE Transactions on Systems, Man, and Cybernetics—Part B:cybernetics, Vol. 35, no. 6.
- [5]Adeel Mumtaz; S.A.M. Gilani; Tahir Jameel (2006): A Novel Color Image Retrieval System Based On Dual Tree Complex Wavelet Transform and Support Vector Machines, IEEE.
- [6]Te-Wei Chiang; Tienwei Tsai; Yo-Ping Huang (2006): Image Retrieval Based on the Wavelet Features of Interest. IEEE International Conference on Systems, Man, and Cybernetics.
- [7] Hao Zhang; Hua Chen; Fa-Xin Yu; Zhe-Ming Lu (2012): Color Image Retrieval System Based on Shape and Texture Watermarks. Second International Conference on Instrumentation & Measurement, Computer, Communication and Control IEEE.
- [8]Yen-Shin Lee; Shu-Sheng Halo; Shu-Wei Lin; Sheng-Yi Li (2012): Image Retrieval by Region Of Interest Motif Co-occurrence Matrix. IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2012) November.
- [9]Dr. H.B.Kekre; Dr. Sudeep D. Thepade; Anil T. Lohar (2014): Image Retrieval using Block Truncation Coding Extended to Color Clumps. IEEE August.
- [10]Machine Bounthanh; Kazuhiko Hamamoto; Boonwat Attachoo; Tha Bounthanh (2013): Content-Based Image Retrieval System Based on Combined and Weighted Multi-Features, 13th International Symposium on Communications and Information Technologies (ISCIT).
- [11]S. F. da Silva; M. A. Batista; C. A. Z. Barcelos (2007): Adaptive image retrieval through the use of a genetic Algorithm. in Proc. 19th IEEE Int.Conf. Tools With Artificial Intelligence, pp. 557–564.
- [12]John Eakins;Margaret Graham (1999): Content based image retrieval. JTAP.
- [13]Ghanshyam Raghuwanshi; Nishchol Mishra; Sanjeev Sharma (2012): Content based Image Retrieval using Implicit and Explicit Feedback with Interactive Genetic Algorithm. International Journal of Computer Applications (0975 – 8887) Volume 43– No.16.
- [14]Chih-chin Lai; Ying-Chuan Chen (2011): A User oriented Image Retrieval System based on Interactive Genetic Algorithm. IEEE transactions on Instrumentation and Measurement.
- [15]Robotka et al (2009): Image retrieval using Gaussian mixture models. Annales Univ. Sci, Budappest.

[16] Amit M. Patil; Prof Ujwal Harode; Varun Patil (2014): Retrieval Of Image content with Non-Separable Multiresolution Wavelet Transform using lifting scheme. SSRG-IJECE- volume 1, issue 6.